| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

Life

This version was saved 17 years, 6 months ago View current version     Page history
Saved by PBworks
on September 25, 2006 at 8:41:20 pm
 

Life

 

Generally accepted conditions which life fulfills:

  1. Homeostasis: Regulation of the internal environment to maintain a constant state; for example, sweating to cool off.
  2. Organization: Being composed of one or more cells, which are the basic units of life.
  3. Metabolism: Production of energy by converting nonliving material into cellular components (synthesis) and decomposing organic matter (catalysis). Living things require energy to maintain internal organization (homeostasis) and to produce the other phenomena associated with life.
  4. Growth: Maintenance of a higher rate of synthesis than catalysis. A growing organism increases in size in all of its parts, rather than simply accumulating matter. The particular species begins to multiply and expand as the evolution continues to flourish.
  5. Adaptation: The ability to change over a period of time in response to the environment. This ability is fundamental to the process of evolution and is determined by the organism's heredity as well as the composition of metabolized substances, and external factors present.
  6. Response to stimuli: A response can take many forms, from the contraction of a unicellular organism when touched to complex reactions involving all the senses of higher animals. A response is often expressed by motion, for example, the leaves of a plant turning toward the sun or an animal chasing its prey.
  7. Reproduction: The ability to produce new organisms. Reproduction can be the division of one cell to form two new cells. Usually the term is applied to the production of a new individual (either asexually, from a single parent organism, or sexually, from at least two differing parent organisms), although strictly speaking it also describes the production of new cells in the process of growth.

 

Exceptions to the conventional definition

It is important to note that life is a definition that applies primarily at the level of species, so even though many individuals of any given species do not reproduce, possibly because they belong to specialized sterile castes (such as ant workers), these are still considered forms of life. One could say that the property of life is inherited; hence, sterile hybrid species such as the mule are considered life although not themselves capable of reproduction. It is also worth noting that non-reproducing individuals may still help the spread of their genes through such mechanisms as kin selection.

For similar reasons, viruses and aberrant prion proteins are often considered replicators rather than forms of life, a distinction warranted because they cannot reproduce without very specialized substrates such as host cells or proteins, respectively. However, most forms of life rely on foods produced by other species, or at least the specific chemistry of Earth's environment.

Some individuals contest such definitions of life on philosophical grounds, and offer the following as examples of life: viruses which reproduce; flames which "grow"; certain computer software programs which are programmed to mutate and evolve; future software programs which may evince (even high-order) behavior; machines which can move; and some forms of proto-life consisting of metabolizing cells without the ability to reproduce.

Still, most scientists would not call such phenomena expressive of life. Generally all six characteristics are required for a population to be considered a life form.

 

Origin of life

There is no truly "standard" model for the origin of life, but most currently accepted scientific models build in one way or another on the following discoveries, which are listed roughly in order of postulated emergence:

  1. Plausible pre-biotic conditions result in the creation of certain basic small molecules (monomers) of life, such as amino acids. This was demonstrated in the Urey-Miller experiment by Stanley L. Miller and Harold C. Urey in 1953.
  2. Phospholipids (of an appropriate length) can spontaneously form lipid bilayers, a basic component of the cell membrane.
  3. The polymerization of nucleotides into random RNA molecules might have resulted in self-replicating ribozymes (RNA world hypothesis).
  4. Selection pressures for catalytic efficiency and diversity result in ribozymes which catalyse peptidyl transfer (hence formation of small proteins), since oligopeptides complex with RNA to form better catalysts. Thus the first ribosome is born, and protein synthesis becomes more prevalent.
  5. Proteins outcompete ribozymes in catalytic ability, and therefore become the dominant biopolymer. Nucleic acids are restricted to predominantly genomic use.

 

As of 2006, no one has yet synthesized a "protocell" using basic components which has the necessary properties of life (the so-called "bottom-up-approach"). Without such a proof-of-principle, explanations have tended to be short on specifics. However, some researchers are working in this field, notably Jack Szostak at Harvard University. Others have argued that a "top-down approach" is more feasible. One such approach attempted by Craig Venter and others at The Institute for Genomic Research involved engineering existing prokaryotic cells with progressively fewer genes, attempting to discern at which point the most minimal requirements for life were reached. The biologist John Desmond Bernal, coined the term Biopoesis for this process, and suggested that there were a number of clearly defined "stages" that could be recognised in explaining the origin of life.

 

Stage 1: The origin of biological monomers

Stage 2: The origin of biological polymers

Stage 3: The evolution from molecules to cell

 

Bernal suggested that Darwinian evolution may have commenced early, some time between Stage 1 and 2.

 

 

The possibility of extraterrestrial life

Earth is the only planet in the universe known to harbor life. The Drake equation has been used to estimate the probability of life elsewhere, but scientists disagree on many of the values of variables in this equation. Depending on those values, the equation may either suggest that life arises frequently or infrequently.

Comments (0)

You don't have permission to comment on this page.